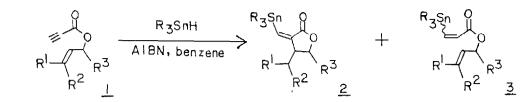
INTRAMOLECULAR CYCLIZATION OF ALLYLIC PROPIOLATES MEDIATED BY THE ADDITION OF STANNYL RADICALS: A NEW SYNTHETIC ROUTE TO α -METHYLENE- γ -BUTYROLACTONES

Eun Lee*, Sung Bo Ko, and Kyung Woon Jung Department of Chemistry, College of Natural Sciences Seoul National University, Seoul 151-742, Korea

Moon Ho Chang

Korea Advanced Institute of Science and Technology Seoul 130-650, Korea


<u>Summary</u>: Allylic propiolates react with tributyl- or triphenylstannane to yield α -(stannyl)methylene- γ -butyrolactones. α -Methylene- γ -butyrolactones are easily prepared by destannylation.

Recently much attention was directed to the chemistry of vinyl radicals generated from alkynes.¹ We were intrigued by the possibility of cyclization of the vinyl radicals generated by the addition of stannyl radicals to allylic propiolates. Radicals generated from allylic haloacetates and tributyl-stannane are known to be immune to cyclization,² but reports on the reactivity of allylic α -acryloyl radicals have not yet been published.

Allylic propiolates were prepared from propiolic acid and allylic bromides.(NaHCO₃, DMF, r.t., 20 hours) Allyl, crotyl, dimethylallyl propiolates (<u>la-c</u>) reacted with triphenylstannane under radical conditions to produce moderate yield of γ -butyrolactones <u>2a-c</u> in addition to the simple addition products <u>3a-c</u>. Cyclohexenyl propiolate (<u>ld</u>) was primarily converted to <u>3d</u> accompanied by relatively low yield of <u>2d</u>. On the other hand, cinnamyl propiolate (<u>le</u>) was largely converted to the cyclized product <u>2e</u>, and <u>3e</u> was isolated as the minor product.

The ratio of <u>2e</u> versus <u>3e</u> did not change very much under high dilution conditions, i.e., slow addition of triphenylstannane using a syringe pump or in situ generation of triphenylstannane.

Use of tributylstannane in place of triphenylstannane resulted in generally lower over-all yield of products. For example, relatively low yield of lactones 2c-e were obtained when propiolates 1c-e reacted with tributylstannane. In these cases, Z and E isomers of 3c-e could be separated from each other, but none of the isomers were predominant.

	Substrate <u>l</u>			R ₃ SnH		Yields(%) ^b	
	R ¹	R ²	R ³	R	Time (hrs) ^a	<u>2</u> °	<u>3</u> (Z/E)
la	Н	н	H	Ph	4	40	_d
<u>1b</u>	Me	H	Н	Ph	4	42	_d 45
<u>1b</u> 1c	Me	Me	Н	Ph Bu	4 6	26 21	42 14(8/6)
<u>ld</u>	Н	-(CH ₂	,) ₃ -	Ph Bu	3 2.5 ^e	18 16g	72 10(4/6)
<u>le</u>	Ph	H	H	Ph Ph ^f Bu Ph	4 4 2.5 ^e	62 34 37 70	21 41 27(15/12) 30

a. Reaction conditions: 0.01-0.02 M in benzene under reflux, cat. AIBN, 1.2 equiv. of stannane.
b. Isolated yields.
c. In most cases, Z-isomers were isolated exclusively.
A small amount of the E-isomer was also obtained from <u>la</u>.
d. Difficult to isolate.
e. The stannane was added by a syringe pump for 2 hours.
f. Triphenylstannane was prepared in situ from triphenylstannyl chloride and sodium cyanoborohydride in t-butanol.
g. Exclusive formation of the cis-fused bicyclic lactone.

 α -(Triphenylstannyl)methylene- γ -butyrolactones were quite stable under the usual destannylation conditions, but α -(tributylstannyl)methylene analogues were easily transformed to α -methylene- γ -butyrolactones. For example, <u>2e</u> (R=butyl) was destannylated in 75% yield when it was treated with HCl or HI in ether or benzene for 4 hours.

In conclusion, radical cyclization of allylic propiolates should present an alternative way in the synthesis of α -methylene- γ -butyrolactones, particularly in view of the ready availability of the substrate from allylic alcohols.

<u>Acknowledgement</u>: Authors thank the Ministry of Education, Korea, for a research grant in basic sciences.

(References)

- (a) Nozaki, K.; Oshima, K.; Utimoto, K. J.Amer.Chem.Soc. 1987, <u>109</u>, 2547.
 (b) Stork, G.; Mook, R., Jr. Ibid, 1987, <u>109</u>, 2829.
 (c) Ichinose, Y.; Wakamatsu, K.; Nozaki, K.; Birbaum, J.; Oshima, K.; Utimoto, K. Chemistry Lett. 1987, 1647.
- Curran, D. P.; Chang, C.; Tetrahedron Lett. 1987, <u>2</u>8, 2477.

(Received in Japan 19 October 1988; accepted 10 December 1988)